OCR Maths M2

Topic Questions from Papers

Centre of Mass

Answers

$\mathbf{1}$	(i)	use of $\mathrm{h} / 4$	B1			
		com vert above lowest pt of contact	B1		can be implied	
		$\mathrm{r}=5 \times \tan 24^{\circ}$	M1			
		$\mathrm{r}=2.2$	A1	4	2.226	
	(ii)	No \& valid reason $\left(\mathrm{eg} 24^{\circ} \measuredangle 26.6^{\circ}\right)$	B1 $\sqrt{ }$	1	$\sqrt{ }$ Yes if their $\mathrm{r} \bullet 2.5$	$\mathbf{5}$

(Q1, June 2005)

$\mathbf{2}$	(iii)	$1.6 \bar{y}=$	M1		must be moments with vert dists	
		$20 \times 0.2+20 \times 0.2+40 \times 0.5$	A1		or $1.6 \bar{y}=20 \times 0.2 \times 2+40 \times 0.7(22.5)$	
		$\bar{y}=17.5 \mathrm{~cm}$	A 1	3		

(Q4, Jan 2006)

(Q3, June 2006)

4	(i)	$\bar{x}=9$ c of m of $\Delta 4 \mathrm{~cm}$ above BD $\begin{aligned} & (324+108)(\mathrm{m}) \bar{y}= \\ & 324(\mathrm{~m}) \times 9+108(\mathrm{~m}) \times(18+4) \\ & 432 \bar{y} \\ & 324 \times 9 \quad\left(18^{2} \times 9\right) \\ & 108 \times(18+4) \\ & \bar{y}=12.25 \end{aligned}$	B1 B1 M1 A1 A1 A1 A1	7	ignore any working 8 cm below C/see their diagram $432 \bar{y}=108 \times 8+18^{2}(12+9)$ from C left hand side $1^{\text {st }}$ term on right hand side 2916 $2^{\text {nd }}$ term on right hand side 2376 $5292 \div 432$ or 49/4	
	(ii)	$\begin{aligned} & \tan \theta=5.75 / 9^{\circ} \\ & \theta=32.6^{\circ} \text { or } 147.4^{\circ} \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \delta \end{aligned}$	2	$\begin{aligned} & \text { must be .../9 } \\ & \left.\left.\sqrt{\tan ^{-1}((18-t h e i r ~} \bar{y}\right) / 9\right) \text { or } 180^{\circ} . \end{aligned}$	

(Q5, June 2006)

$\mathbf{5}$		com directly above lowest point	B1			
		$\tan \alpha=6 / 10$	M1			
		$\alpha=31.0$	A1	3	or 0.540 rads	$\mathbf{3}$

6	(i)	com of $\Delta 4 \mathrm{~cm}$ right of C	B1			
		$1.5 \times 10+7 \times 20=\bar{x} \times 30$	M1			
			A1			
		$\bar{x}=5.17$	A1		$51 / 6$ 31/6	
		com of $\Delta 6 \mathrm{~cm}$ above E $4.5 \times 10+6 \times 20=\bar{y} \times 30$	B1		or 3 cm below C	
		$4.5 \times 10+6 \times 20=\bar{y} \times 30$	M1			
			A1			
		$\bar{y}=5.5$	A1	8		
	(ii)	$\tan \theta=5.17 / 3.5$	M1		right way up and (9- \bar{y})	
		$55.9{ }^{\circ}$ or 124°	A1/	2	\int their $\bar{x} /(9-\bar{y})$	
	(iii)	$\mathrm{d}=15 \sin 45^{\circ} \quad(10.61)$	B1		dist to line of action of T	
		$\mathrm{Td}=30 \times 5.17$	M1		allow Tx15 i.e. T vertical	
		$\mathrm{T}=14.6$	A1	3		13

(Q6, Jan 2007)

$\mathbf{7}$	com of hemisphere 0.3 from O	B1	or 0.5 from base
	com of cylinder $h / 2$ from O	B1	
	$0.6 \times 45=40 \times 0.5+(0.8+h / 2) \times 5$ or	M1	or $40 \times 0.3-5 \times h / 2=45 \times 0.2$
	$45(\mathrm{~h}+0.2)=5 \mathrm{~h} / 2+40(\mathrm{~h}+0.3)$	A1	or $5(0.2+\mathrm{h} / 2)=40 \times 0.1$
	$27=20+(0.8+h / 2) \times 5$	M1	solving
	$h=1.2$	A1 6	AG

(Q8, June 2007)

8 (i)	$\begin{aligned} & (2 x 4 x \sin \Pi / 2) / 3 \times \Pi / 2 \\ & 1.70 \\ & \hline \end{aligned}$	$\begin{array}{ll} \hline \text { M1 } \\ \text { A1 } & 2 \\ \hline \end{array}$	$\text { or } 4 \mathrm{r} / 3 \Pi$ AG
(ii)(a)	$\begin{array}{ll} \hline \bar{x} \times \mathrm{xd}\left(8 \times 20-\Pi \times 4^{2} / 2\right)=10 \times 8 \times 20 \mathrm{~d}- \\ 12 \times \Pi \times 4^{2} / 2 \times \mathrm{xd} \\ 10 \times 8 \times 20(\mathrm{~d}) & (1600) \\ \left(8 \times 20-\Pi \times 4^{2} / 2\right)(\mathrm{d}) & (134.9) \\ \left(12 \times \Pi \times 4^{2} / 2\right)(\mathrm{d}) \\ \bar{x}=9.63 \mathrm{~cm} \\ \hline \end{array}$	M1 A1 A1 A1 A1 5	$\begin{aligned} & \text { or } 134.9 \bar{x}= \\ & 64 \times 4+38.9 \times 12+32 \times 18 \quad(1298.8) \\ & 64 \times 4 \\ & 38.9 \times 12 \\ & 32 \times 18 \\ & \text { AG } \end{aligned}$
(ii)(b)	$\begin{align*} & \bar{y} \times \mathrm{xd}\left(8 \times 20-\Pi \times 4^{2} / 2\right)=4 \mathrm{x} 8 \mathrm{x} 20 \mathrm{~d}- \\ & 1.7 \mathrm{x} \Pi \times 4^{2} / 2 \mathrm{xd} \\ & 4 \times 8 \times 20(\mathrm{~d}) \\ & 1.7 \mathrm{~d} \times \Pi \times 4^{2} / 2 \tag{13.6П}\\ & \bar{y}=4.43 \mathrm{~cm} \end{align*}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1M1 } \\ & \text { A1 } 4 \end{aligned}$	or $64 \mathrm{x} 4=42.7+38.9 y$ $\begin{aligned} & \bar{y}=5.49 \\ & 135 \bar{y}=32 \times 4+38.9 \times 5.49+64 \times 4 \end{aligned}$

(Q8, Jan 2008)

9 (i)	$3 / 8 \times 3 \quad(1.125)$	B1	c.o.m. hemisphere
	$0.53 \mathrm{~d}=5 \times 0.02+(10+3 / 8 \times 3) \times 0.5$	M1	$0.53 \mathrm{e}=3 \times 5 / 8 \times 0.5+8 \times 0.02+13 \times .01$
	$\mathrm{~d}=10.7$	A1	$0.53 \mathrm{f}=3 \times 3 / 8 \times 0.5-5 \times 0.02-10 \times 0.01$
	A1 4	AG $(\mathrm{e}=2.316 \mathrm{f}=0.684)$	

10 (i)	com of $\Delta 3 \mathrm{~cm}$ right of C	B1
	$(48+27) \bar{x}=48 \mathrm{x} 4+27 \mathrm{x} 11$	M1
	$\bar{x}=6.52$	A1
	A1	
	com of $\Delta 2 \mathrm{~cm}$ above AD	B1
	$(48+27) \bar{y}=48 \times 3+27 \times 2$	M1
	$\bar{y}=2.64$	A1
	A1 8	

(Q8, June 2008)

11 (ii)	$\mathrm{d}=(2 \mathrm{x} 40 \sin \Pi / 2) \div 3 \Pi / 2$	M1	must be radians
		A1	
	$\mathrm{d}=17.0$	A1	16.98 160/3П (8/15П m)
	$70 \bar{y}=100 \times 60+217 \times 10$	M1	
		A1 ft	$\mathrm{ft} 200+$ their đ or $2+$ their đ (m)
	$\bar{y}=117$	A1 6	116.7

(Q3, Jan 2009)

(Q5, June 2009)

13 (i)	$\begin{aligned} & \overline{\mathrm{u}}=0.2 \text { (from vertex) or } 0.8 \text { or } 0.1 \\ & 0.5 \mathrm{~d}=0.2 \times \overline{\mathbf{u}}+0.3 \times 0.65 \end{aligned}$ $\mathrm{d}=0.47$	B1 M1 A1 A1 $[4]$	com of conical shell AG
(ii)	$\begin{aligned} & \mathrm{s}=0.5 \\ & \mathrm{~T} \sin 80^{\circ} \times 0.5=0.47 \times 0.5 \times 9.8 \\ & \mathrm{~T}=4.68 \mathrm{~N} \end{aligned}$	$\begin{array}{ll} \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & {[4]} \end{array}$	slant height, may be implied

(Q3, Jan 2010)

14 (i)	$\begin{aligned} & (6 \sin \Pi / 2) \div(\Pi / 2) \\ & 3.82 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } 2 \end{aligned}$	Use of correct formula AG
(ii)	$\begin{aligned} & 8 \mathrm{~d}=3(6-3.82)+5 \mathrm{x} 9.82 \\ & \text { or } 8 \mathrm{x}= \pm\{3(-3.82)+5 \mathrm{x} 3.82\} \\ & \mathrm{d}=6.95 \text { or } 6.96 \text { or } \mathrm{x}=+/-0.955 \\ & \tan \theta=0.96 / 6 \\ & \theta=9^{\circ} \end{aligned}$	M1 A1 A1 M1 A1 5	Method to find centre of mass Attempt to find the required angle 7

(Q2, June 2010)

15	(i)	$\begin{aligned} & 3 \mathrm{x}_{\mathrm{G}}=2 \times 0.3+1 \times 0.6 \mathrm{OR} 3 \mathrm{x}_{\mathrm{G}}=2 \times 0.3+0 \mathrm{OR} 3 \mathrm{x}_{\mathrm{G}}=4 \times 0.3 \\ & \mathrm{OR} 3 \mathrm{y}_{\mathrm{G}}=1 \times 0.3+1 \times 0.6+0 \mathrm{OR} 3 \mathrm{y}_{\mathrm{G}}=4 \times 0.3-1 \times 0.3 \\ & \mathrm{x}_{\mathrm{G}}=0.4 \text { (from } \mathrm{AD} \text {) OR } \mathrm{x}_{\mathrm{G}}=0.2 \quad \text { (from BC) } \\ & \mathrm{y}_{\mathrm{G}}=0.3 \mathrm{~m} \text { from } \mathrm{AB} \text { or } \mathrm{CD} \\ & \mathrm{AG}^{2}=0.4^{2}+0.3^{2} \\ & \mathrm{AG}=0.5 \mathrm{~m} \end{aligned}$	M1 A1 A1 M1 A1 [5]	Table of moments idea. M0 for reducing to 1D problem. Masses/weights may be included. Pythagoras with 2 appropriate distances. This may only be seen in (ii), allow M1A1 in this case.

(Q1, Jan 2011)

16	(i)	$\begin{aligned} & x_{H}=3 \times 0.6 / 8 \\ & \pi\left(0.6^{2} \times 0.6\right)(0.6 / 2)-\left(0.6^{3} \times 2 \pi / 3\right) 0.225 \\ & =\pi \times 0.6^{3}(1+2 / 3) x_{G} \\ & x_{G}=0.09 \mathrm{~m} \end{aligned}$	B1 M1 A1 A1 A1 [5]	CoM hemisphere ($\mathrm{x}_{\mathrm{H}}=0.225$), may be implied Use of table of moments idea SC Volume of sphere used, max B1M1A1, moment equation fully correct for A1 (3/5) Accept -0.09

(Q5, Jan 2011)

17 i	$\begin{aligned} & -(8 \cos 30 / 3)\left(8^{2} \sin 60 / 2\right) \\ & +(4)\left(8^{2}\right) \\ & =\left(8^{2}+8^{2} \sin 60 / 2\right)\left(x_{G}\right) \\ & x_{G}=2.09 \mathrm{~cm} \end{aligned}$	M1 A1 A1 A1 A1 $[5]$	Table of moments idea, may include g and/or density. -2.309×27.7
ii	$\begin{aligned} & \tan \theta=(2.09 / 4) \\ & \theta=27.6^{\circ} \end{aligned}$	$\begin{array}{\|c\|} \hline \text { M1 } \\ \text { A1ft } \\ \text { [2] } \end{array}$	$\mathrm{ft} \mathrm{cv}\left(\mathrm{x}_{\mathrm{G}}\right)$

(Q3, June 2011)

18	(i)	$\begin{aligned} & h=r \tan \alpha \\ & x\left(\frac{2}{3} \pi r^{3}+\frac{1}{3} \pi r^{2} h\right)=\frac{1}{3} \pi r^{2} h \times \frac{h}{4}-\frac{2}{3} \pi r^{3} \times \frac{3}{8} r \\ & x=\frac{r(\tan 2}{8+4-3)} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[4]} \end{aligned}$	Seen anywhere and in any form. Table of values idea. AG www
	(ii)	$\begin{aligned} & x<0 \\ & \text { Solve } \tan ^{2} \alpha-3<0 \\ & \alpha<60 \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & {[3]} \end{aligned}$	```May be implied. Condone \(=\) Condone \(\leq\) throughout. SC Use of \(=\) or \(>\) throughout. Max B0 M1 A0```

19	(i)	$\begin{aligned} & 1 / 3 a \\ & (25+2.5 a) x_{G} \\ & =25 \times 2.5+2.5 a \times(5+1 / 3 a) \\ & x_{\mathrm{G}}=\frac{a^{2}+15 a+75}{3(a+10)} \quad \mathbf{A G} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { [5] } \end{aligned}$	Centre of mass of triangle Table of values idea, using any fixed axis Relative to the axis they are using
	(ii)	$\frac{a^{2}+15 a+75}{3(a+10)}=5$ Solving for a $a=8.66 \text { or } 5 \sqrt{ } 3$	$\begin{gathered} \text { *M1 } \\ \\ \text { dep*M1 } \\ \text { A1 } \\ {[3]} \\ \hline \end{gathered}$	Substitute x_{G} as 5 $a \leq 8.66$
	(iii)	$\begin{aligned} & (25+2.5 a) y_{\mathrm{G}}=25 \times 2.5+2.5 a \times(2 / 3 \times 5) \\ & y_{\mathrm{G}}=\frac{10 a+75}{3(a+10)} \text { or } 2.89 \\ & \tan \theta=x_{\mathrm{G}} y_{\mathrm{G}} \\ & \quad=5 / y_{\mathrm{G}} \\ & \theta=60 \end{aligned}$	$\begin{gathered} \text { *M1 } \\ \text { A1ft } \\ \text { A1ft } \\ \\ \text { dep*M1 } \\ \text { A1ft } \\ \text { A1 } \\ {[6]} \end{gathered}$	Method to find centre of mass from $A B$ (or $C D$) with or without a substituted. ft their a from (ii), from $\mathrm{CD} y_{\mathrm{G}}=2.11$ Using trig to find an appropriate angle, eg complement of θ. ft their a from (ii), but not an incorrect y_{G} $\theta \leq 60$ (anything that rounds to 60)

(Q7, June 2012)

20	(i)	$\begin{aligned} & (2 \times 3 \sin (\pi / 2)) /(3 \pi / 2) \text { or equivalent } \\ & 3 \times 6^{2} \\ & -\left(\pi \times 3^{2} / 2\right) \times(6-4 / \pi) \\ & =\left(6^{2}-\pi \times 3^{2} / 2\right) \mathrm{x}_{\mathrm{G}} \\ & \mathrm{x}_{\mathrm{G}}=1.88 \mathrm{~cm} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[6]} \end{aligned}$	Centre of mass of semicircle; $4 / \pi$ Table of moments idea about any axis.	
	(ii)	$\begin{aligned} & \tan \theta=1.88 / 3 \\ & \theta=32.1^{\circ} \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1ft } \\ {[2]} \end{gathered}$	Attempt at a relevant angle allow $180-\theta$ \& radians (0.561 or 0.560)	

(Q4, Jan 2013)

21	(i)	$\begin{aligned} & 4.4 x_{\mathrm{G}}=4 \times 1 / 4 \times 8 \\ & \quad-0.4 \times 1 / 3 \times 10 \\ & x_{\mathrm{G}}=1.52 \mathrm{~cm} \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[4]} \\ & \hline \end{aligned}$	Table of moments idea. Moments about other axes acceptable $\text { Allow }{ }^{50} / 33$
	(ii)	$\begin{aligned} & T_{\text {shell }} \times 18=4.4 \mathrm{~g} \times(8-1.52) \text { or } T_{\text {cone }} \times 18=4.4 \mathrm{~g} \times(10+1.52) \\ & T_{\text {shell }}+T_{\text {cone }}=4.4 \mathrm{~g} \\ & T_{\text {shell }}=15.5 \text { and } T_{\text {cone }}=27.6 \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1ft } \\ \text { M1 } \\ \text { A1 } \\ {[4]} \\ \hline \end{gathered}$	Or any other correct moment equation. ft on x_{G} from (i) May use a second moments equation For both

